Residual 3D convolutional neural network to enhance sinograms from small-animal positron emission tomography images
Positron emission tomography (PET) has been widely used in nuclear medicine to diagnose cancer. PET images suffer from degradation because of the scanner’s physical limitations, the radiotracer’s reduced dose, and the acquisition time. In this work, we propose a residual three-dimensional (3D) and c...
Uloženo v:
Další autoři: | Rodríguez, Leandro José, Ochoa Domínguez, Humberto, Vergara Villegas, Osslan Osiris, Cruz Sanchez, Vianey Guadalupe, Polanco Gonzalez, Javier, Sossa, Juan Humberto |
---|---|
Médium: | Artículo |
Jazyk: | en_US |
Vydáno: |
2023
|
Témata: | |
On-line přístup: | https://doi.org/10.1016/j.patrec.2023.05.005 https://www.sciencedirect.com/science/article/abs/pii/S0167865523001320 |
Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo otaguje tento záznam!
|
Podobné jednotky
-
Dictionary-based super resolution for positron emission tomography images
Autor: Rodríguez Hernández, Leandro José
Vydáno: (2019) -
Reconstruction of PET Images Using Cross-Entropy and Field of Experts
Autor: Mejia, Jose
Vydáno: (2019) -
Convolutional Neural Network in a Pseudo-Distributed Environment for Classification of Chest X-Ray Images of Patients with Pneumonia
Autor: Sánchez Solís, Julia Patricia
Vydáno: (2020) -
Study of the Effect of Combining Activation Functions in a Convolutional Neural Network
Autor: Vergara Villegas, Osslan Osiris
Vydáno: (2020) -
Demystifying Deep Learning Building Blocks
Autor: Ochoa Domínguez, Humberto
Vydáno: (2024)