Neural control and coordination of decentralized transportation robots

This work presents the modeling, control architecture and simulation of a decentralized multi-robot system for transporting material in a warehouse. Each robot has a task scheduler comprising two different neural networks for task allocation and fault tolerance. The path planner consists of a first-...

全面介绍

Saved in:
书目详细资料
主要作者: Martinez-Garcia, Edgar
其他作者: carrillo, victor, torres cordoba, rafael, Lopez-Gonzalez, Elifalet
格式: Artículo
语言:en_US
出版: 2018
主题:
4WD
在线阅读:https://doi.org/10.1177/0959651818756777
https://journals.sagepub.com/doi/abs/10.1177/0959651818756777?journalCode=piia
标签: 添加标签
没有标签, 成为第一个标记此记录!
实物特征
总结:This work presents the modeling, control architecture and simulation of a decentralized multi-robot system for transporting material in a warehouse. Each robot has a task scheduler comprising two different neural networks for task allocation and fault tolerance. The path planner consists of a first-order dynamical state equation to control the robot’s four-wheel asynchronous driving and steering, as well as a partial differential equation to coordinate speeds and arrival times. The task allocation and motion coordination combine the robot’s kinematic control law with a one-layer artificial neural network that classifies five-dimensional symbolic logical equations that define the state transitions between asynchronous events. These events include carry and fetch, material supply, robots stop, obstacle avoidance and battery state. Another multilayer artificial neural network reads the same state inputs for fault detection and recovery. The two neural systems feed forward a navigation planner, which uses a partial differential equation to coordinate the robot’s speed and its relaxation time with respect to the robot in front of it. The energy cost is measured by a Lagrangian function. The proposed planning control scheme was computationally validated through parallel computing simulations. The system is shown to be consistent, reliable and feasible, and it allows for fast navigational tasks.