Inferring Parameters of a Relational System of Preferences from Assignment Examples using an Evolutionary Algorithm
Most evolutionary multi-objective algorithms perform poorly in many-objective problems. They normally do not make selective pressure towards the Region of Interest (RoI), the privileged zone in the Pareto frontier that contains solutions important to a DM. Several works have proved that a priori inc...
Saved in:
主要作者: | Fernández, Eduardo |
---|---|
其他作者: | Sanchez Solis, Julia Patricia, Rivera Zarate, Gilberto |
格式: | Artículo |
語言: | en_US |
出版: |
2019
|
主題: | |
在線閱讀: | https://doi.org/10.3846/tede.2019.9475 https://journals.vgtu.lt/index.php/TEDE/article/view/9475 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Hybrid evolutionary multi-objective optimisation using outranking-based ordinal classification methods
出版: (2020) -
Interdependent Projects Selection with Preference Incorporation
由: Gómez, Claudia
出版: (2018) -
Preference Incorporation into Many-Objective Optimization: An Ant Colony Algorithm based on Interval Outranking
由: Rivera Zarate, Gilberto
出版: (2021) -
Robustness analysis of an outranking model parameters’ elicitation method in the presence of noisy examples
由: Rangel Valdes, Nelson
出版: (2018) -
Hybridisation of Swarm Intelligence Algorithms with Multi-Criteria Ordinal Classification: A Strategy to Address Many-Objective Optimisation
由: Rivera Zarate, Gilberto
出版: (2022)