Some aspects of Zariski topology for multiplication modules and their attached frames and quantales

For a multiplication R-module M we consider the Zariski topology in the set Spec (M) of prime submodules of M. We investigate the relationship between the algebraic properties of the submodules of M and the topological properties of some subspaces of Spec (M). We also consider some topological a...

Popoln opis

Shranjeno v:
Bibliografske podrobnosti
Glavni avtor: Castro Pérez, Jaime
Drugi avtorji: Rios Montes, Jose, Tapia Sanchez, Gustavo
Format: Artículo
Jezik:en_US
Izdano: 2019
Teme:
Online dostop:https://doi.org/10.4134/JKMS.j180649
https://doi.org/10.4134/JKMS.j180649
Oznake: Označite
Brez oznak, prvi označite!
Opis
Izvleček:For a multiplication R-module M we consider the Zariski topology in the set Spec (M) of prime submodules of M. We investigate the relationship between the algebraic properties of the submodules of M and the topological properties of some subspaces of Spec (M). We also consider some topological aspects of certain frames. We prove that if R is a commutative ring and M is a multiplication R-module, then the lattice Semp (M/N) of semiprime submodules of M/N is a spatial frame for every submodule N of M. When M is a quasi projective module, we obtain that the interval ↑(N) Semp(M) = {P ∈ Semp (M) | N ⊆ P} and the lattice Semp (M/N) are isomorphic as frames. Finally, we obtain results about quantales and the classical Krull dimension of M