Improving segmentation of liver tumors using deep learning
Liver tumor segmentation from computed tomography images is an essential task for the automated diagnosis and treatment of liver cancer. However, such task is di cult due to the variability of morphologies, di use boundaries, heterogeneous densities, and sizes of the lesions. In this work we develop...
Bewaard in:
Hoofdauteur: | Mejia, Jose |
---|---|
Andere auteurs: | Ochoa, Alberto, Mederos, Boris |
Formaat: | Capítulo de libro |
Taal: | English |
Gepubliceerd in: |
Springer
2020
|
Onderwerpen: | |
Online toegang: | https://doi.org/10.1007/978-3-030-35445-9 https://link.springer.com/chapter/10.1007/978-3-030-35445-9_52 |
Tags: |
Voeg label toe
Geen labels, Wees de eerste die dit record labelt!
|
Gelijkaardige items
-
Mexican traffic sign detection and classification using deep learning
Gepubliceerd in: (2022) -
Detection of COVID-19 Lung Lesions in Computed Tomography Images Using Deep Learning
Gepubliceerd in: (2022) -
Intelligent system for the visual support of caloric intake of food in inhabitants of a smart city using a deep learning model
door: Ochoa, Alberto
Gepubliceerd in: (2020) -
Demystifying Deep Learning Building Blocks
door: Ochoa Domínguez, Humberto
Gepubliceerd in: (2024) -
Ethnic Characterization in Amalgamated People for Airport Security Using a Repository of Images and Pigeon-Inspired Optimization (PIO) Algorithm for the Improvement of Their Results
door: Ochoa, Alberto
Gepubliceerd in: (2020)