Improving segmentation of liver tumors using deep learning
Liver tumor segmentation from computed tomography images is an essential task for the automated diagnosis and treatment of liver cancer. However, such task is di cult due to the variability of morphologies, di use boundaries, heterogeneous densities, and sizes of the lesions. In this work we develop...
Uloženo v:
Hlavní autor: | Mejia, Jose |
---|---|
Další autoři: | Ochoa, Alberto, Mederos, Boris |
Médium: | Capítulo de libro |
Jazyk: | English |
Vydáno: |
Springer
2020
|
Témata: | |
On-line přístup: | https://doi.org/10.1007/978-3-030-35445-9 https://link.springer.com/chapter/10.1007/978-3-030-35445-9_52 |
Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo otaguje tento záznam!
|
Podobné jednotky
-
Mexican traffic sign detection and classification using deep learning
Vydáno: (2022) -
Detection of COVID-19 Lung Lesions in Computed Tomography Images Using Deep Learning
Vydáno: (2022) -
Intelligent system for the visual support of caloric intake of food in inhabitants of a smart city using a deep learning model
Autor: Ochoa, Alberto
Vydáno: (2020) -
Demystifying Deep Learning Building Blocks
Autor: Ochoa Domínguez, Humberto
Vydáno: (2024) -
Ethnic Characterization in Amalgamated People for Airport Security Using a Repository of Images and Pigeon-Inspired Optimization (PIO) Algorithm for the Improvement of Their Results
Autor: Ochoa, Alberto
Vydáno: (2020)