Smart Parking: Enhancing Urban Mobility with Fog Computing and Machine Learning-Based Parking Occupancy Prediction
Parking occupancy is difficult in most modern cities because of increases in the accessibility and use of motor vehicles, and users generally take several minutes or even hours to find a place to park. In this work, we propose a smart parking prediction model in order to help users locate in advance...
Enregistré dans:
Auteur principal: | Enriquez Aguilera, Francisco Javier |
---|---|
Autres auteurs: | Bravo Martinez, Gabriel, Mejia, Jose, Cruz, Oliverio |
Format: | Artículo |
Langue: | English |
Publié: |
2024
|
Sujets: | |
Accès en ligne: | https://doi.org/10.3390/asi7030052 https://www.mdpi.com/2571-5577/7/3/52 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Fog Computing and Industry 4.0 for Newsvendor Inventory Model Using Attention Mechanism and Gated Recurrent Unit
par: Avelar, Liliana
Publié: (2024) -
Visiting an Urban Park in a Smart City: An Intelligent Systemic Approach Considering Visitors´ Desires and Expectations
Publié: (2021) -
Importance value of trees and social perception as fundamentals of environmental education in an urban park
par: Mariana Buendia-Oliva, et autres
Publié: (2024) -
Enhancing financial risk prediction with symbolic classifiers: addressing class imbalance and the accuracy–interpretability trade–off
Publié: (2024) -
Definition of Urban Park’ Concept Upon a Systemic, Management and Multidimensional Perspective
Publié: (2024)