Enhancing financial risk prediction with symbolic classifiers: addressing class imbalance and the accuracy–interpretability trade–off

Machine learning for financial risk prediction has garnered substantial interest in recent decades. However, the class imbalance problem and the dilemma of accuracy gain by loss interpretability have yet to be widely studied. Symbolic classifiers have emerged as a promising solution for forecasting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Mena, Luis, García, Vicente, Felix, Vanessa, Ostos, Rodolfo, Martínez-Peláez, Rafael, Ochoa-Brust, Alberto, Velarde-Alvarado, Pablo
Format: Artículo
Sprache:English
Veröffentlicht: 2024
Schlagworte:
Online Zugang:https://doi.org/10.1057/s41599-024-04047-5
https://www.nature.com/articles/s41599-024-04047-5
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

Ähnliche Einträge