Enhancing financial risk prediction with symbolic classifiers: addressing class imbalance and the accuracy–interpretability trade–off
Machine learning for financial risk prediction has garnered substantial interest in recent decades. However, the class imbalance problem and the dilemma of accuracy gain by loss interpretability have yet to be widely studied. Symbolic classifiers have emerged as a promising solution for forecasting...
Gespeichert in:
Weitere Verfasser: | Mena, Luis, García, Vicente, Felix, Vanessa, Ostos, Rodolfo, Martínez-Peláez, Rafael, Ochoa-Brust, Alberto, Velarde-Alvarado, Pablo |
---|---|
Format: | Artículo |
Sprache: | English |
Veröffentlicht: |
2024
|
Schlagworte: | |
Online Zugang: | https://doi.org/10.1057/s41599-024-04047-5 https://www.nature.com/articles/s41599-024-04047-5 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Ähnliche Einträge
-
Understanding the apparent superiority of over-sampling through an analysis of local information for class-imbalanced data
von: García, Vicente
Veröffentlicht: (2019) -
Exploring the synergetic effects of sample types on the performance of ensembles for credit risk and corporate bankruptcy prediction
von: García, Vicente
Veröffentlicht: (2019) -
Dissimilarity-Based Linear Models for Corporate Bankruptcy Prediction
von: García, Vicente
Veröffentlicht: (2019) -
Trade-offs between visual and chemical behavioral responses
von: Martins, Emilia P.
Veröffentlicht: (2018) -
An interactive ACO enriched with an eclectic multi-criteria ordinal classifier to address many-objective optimisation problems
von: Rivera Zarate, Gilberto
Veröffentlicht: (2023)