Enhancing financial risk prediction with symbolic classifiers: addressing class imbalance and the accuracy–interpretability trade–off
Machine learning for financial risk prediction has garnered substantial interest in recent decades. However, the class imbalance problem and the dilemma of accuracy gain by loss interpretability have yet to be widely studied. Symbolic classifiers have emerged as a promising solution for forecasting...
Uloženo v:
Další autoři: | Mena, Luis, García, Vicente, Felix, Vanessa, Ostos, Rodolfo, Martínez-Peláez, Rafael, Ochoa-Brust, Alberto, Velarde-Alvarado, Pablo |
---|---|
Médium: | Artículo |
Jazyk: | English |
Vydáno: |
2024
|
Témata: | |
On-line přístup: | https://doi.org/10.1057/s41599-024-04047-5 https://www.nature.com/articles/s41599-024-04047-5 |
Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo otaguje tento záznam!
|
Podobné jednotky
-
Understanding the apparent superiority of over-sampling through an analysis of local information for class-imbalanced data
Autor: García, Vicente
Vydáno: (2019) -
Exploring the synergetic effects of sample types on the performance of ensembles for credit risk and corporate bankruptcy prediction
Autor: García, Vicente
Vydáno: (2019) -
Dissimilarity-Based Linear Models for Corporate Bankruptcy Prediction
Autor: García, Vicente
Vydáno: (2019) -
Trade-offs between visual and chemical behavioral responses
Autor: Martins, Emilia P.
Vydáno: (2018) -
An interactive ACO enriched with an eclectic multi-criteria ordinal classifier to address many-objective optimisation problems
Autor: Rivera Zarate, Gilberto
Vydáno: (2023)