Enhancing financial risk prediction with symbolic classifiers: addressing class imbalance and the accuracy–interpretability trade–off

Machine learning for financial risk prediction has garnered substantial interest in recent decades. However, the class imbalance problem and the dilemma of accuracy gain by loss interpretability have yet to be widely studied. Symbolic classifiers have emerged as a promising solution for forecasting...

全面介绍

Saved in:
书目详细资料
其他作者: Mena, Luis, García, Vicente, Felix, Vanessa, Ostos, Rodolfo, Martínez-Peláez, Rafael, Ochoa-Brust, Alberto, Velarde-Alvarado, Pablo
格式: Artículo
语言:English
出版: 2024
主题:
在线阅读:https://doi.org/10.1057/s41599-024-04047-5
https://www.nature.com/articles/s41599-024-04047-5
标签: 添加标签
没有标签, 成为第一个标记此记录!

相似书籍